【导语】学习是一个坚持不懈的过程,走走停停便难有成就。比如烧开水,在烧到80度是停下来,等水冷了又烧,没烧开又停,如此周而复始,又费精力又费电,很难喝到水。学习也是一样,学任何一门功课,都不能只有三分钟热度,而要一鼓作气,天天坚持,久而久之,不论是状元还是伊人,都会向你招手。免费学习网高一频道为正在努力学习的你整理了《沪科版高一物理知识点归纳》,希望对你有帮助!
【一】
力的分解是力的合成的逆运算,同样遵循平行四边形定则三角形法则,很少用:把一个已知力作为平行四边形的对角线,那么与已知力共点的平行四边形的两条邻边就表示已知力的两个分力。然而,如果没有其他限制,对于同一条对角线,可以作出无数个不同的平行四边形。
为此,在分解某个力时,常可采用以下两种方式:
①按照力产生的实际效果进行分解——先根据力的实际作用效果确定分力的方向,再根据平行四边形定则求出分力的大小。②根据“正交分解法”进行分解——先合理选定直角坐标系,再将已知力投影到坐标轴上求出它的两个分量。
关于第②种分解方法,我们将在这里重点讲一下按实际效果分解力的几类典型问题:放在水平面上的物体所受斜向上拉力的分解将物体放在弹簧台秤上,注意弹簧台秤的示数,然后作用一个水平拉力,再使拉力的方向从水平方向缓慢地向上偏转,台秤示数逐渐变小,说明拉力除有水平向前拉物体的效果外,还有竖直向上提物体的效果。所以,可将斜向上的拉力沿水平向前和竖直向上两个方向分解。斜面上物体重力的分解所示,在斜面上铺上一层海绵,放上一个圆柱形重物,可以观察到重物下滚的同时,还能使海绵形变有压力作用,从而说明为什么将重力分解成F1和F2这样两个分力。
1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2F1>F2
2.互成角度力的合成:
F=F12+F22+2F1F2cosα1/2余弦定理F1⊥F2时:F=F12+F221/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinββ为合力与x轴之间的夹角tgβ=Fy/Fx
注:
1力矢量的合成与分解遵循平行四边形定则;
2合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
3除公式法外,也可用作图法求解,此时要选择标度,严格作图;
4F1与F2的值一定时,F1与F2的夹角α角越大,合力越小;
5同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
【二】
物体平衡条件
1平衡状态:物体处于静止或匀速直线运动状态。
一个物体在共点力的作用下,如果保持静止或者做匀速直线运动,我们就说这个物体处于平衡状态。
由此可见,平衡状态分两种情况:
一种是静态平衡,此时,物体运动的速度v=0,物体的加速度a=0;
另一种状态是动态平衡,此时,物体运动的速度v≠0,物体的加速度a=0。
2物体处于平衡状态,其受力必须满足合外力为零,即F合=0,加速度=0.这就是共点力作用下物体的平衡条件。
拉密定理
如果物体在三个共点力作用下处于平衡状态,那么这个力的大小分别与另外两个力的夹角的正弦成正比。
平衡条件的推论
1二力平衡:如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小相等、方向相反,为一对反力。
2三力平衡:如果物体在三个力的作用下处在平衡状态,那么这三个力不是平行的话就必共点,而且其中两个力的合力必与第三个力大小相等、方向相反。
根据这个特点,我们求解三力平衡问题时,常用的方法是力的合成法,当然也可以用分解法包括正交分解、力的矢量三角形法和相似三角形法等。
3多力平衡:如果物体受多个力作用处于平衡状态,其中任何一个力与其余力的合力大小相等、方向相反。