cosx的平方的导数是-2sinxcosx。推导过程:令fx=cosx^,那么f'x=cosx^2'=2cosx*cosx'=-2sinxcosx。即cosx^2的导数为-2sinxcosx。
cosx的平方的导数怎么求
对y=cosx²求导:
解:令y=cost,t=x²,则对y求导实际先进行y=cost对t求导,再进行t=x²对x求导。
所以:y'=-sint*2x
=-2x*sinx²
对y=cos²x求导:
令y=t²,t=cosx,则对y求导实际先进行y=t²对t求导,再进行t=cosx对x求导。
所以:y'=2t*-sinx
=-2cosxsinx
三角函数的导数公式
sinx'=cosx
cosx'=-sinx
tanx'=sec²x=1+tan²x
cotx'=-csc²x
secx'=tanx·secx
cscx'=-cotx·cscx
tanx'=sinx/cosx'=[cosx·cosx-sinx·-sinx]/cos²x=sec²x