初二上册数学期末试卷
一、精心选一选(本大题共8小题。每小题3分,共24分)
下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内.
1.下列运算中,计算结果正确的是( ).
A. B. C. D.
2.23表示( ).
A. 2×2×2 B. 2×3 C. 3×3 D. 2+2+2
3.在平面直角坐标系中。点P(-2,3)关于x轴的对称点在( ).
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).
A. 3 B. 5 C. 7 D. 9
5.在如图中,AB = AC。BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是( ).
A. △ABE≌△ACF
B. 点D在∠BAC的平分线上
C. △BDF≌△CDE
D. 点D是BE的中点
6.在以下四个图形中。对称轴条数最多的一个图形是( ).
7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).
8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).
A. B. C. D.
二、细心填一填(本大题共6小题,每小题3分,共18分)
9.若单项式 与 是同类项,则 = .
l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 .
11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.
12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB画在方格纸上,请在小方格的顶点上标出一个点P。使点P落在∠AOB的平分线上.
13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:
(1)18×891 = × ;(2)24×231 = × .
14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:
(1)第4个图案中白色瓷砖块数是 ;
(2)第n个图案中白色瓷砖块数是 .
第1个图案 第2个图案 第3个图案
三、耐心求一求(本大题共4小题.每小题6分。共24分)
15.分解下列因式:
(1) . (2) .
16.先化简,再求值:
,其中x = -2。y = .
17.将多项式 加上一个单项式后,使它能成为一个整式的完全平方。则添加单项式的方法共有多少种?请写出所有的式子及演示过程.
18.如图,△ABC是格点三角形。且A(-3,-2),B(-2,-3),C(1,-1).
(1)请在图中画出△ABC关于y轴的对称△A’B’C’.
(2)写出△A’B’C’各点坐标。并计算△A’B’C’的面积.
四、用心探一探(本大题共3小题,每小题8分,共24分)
19.如图。在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.
(1)试判定△ODE的形状。并说明你的理由.
(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.
20.如图,直线l1,l2相交于点A。l1与x轴的交点坐标为(-l,0),l2与y轴的交点坐标为(0,-2)结合图象解答下列问题:
(1)求出直线l1表示的一次函数的表达式.
(2)当x为何值时,l1,l2表示的两个一次函数的函数值都大于0?
21. 如图是八年级(1)班陈平同学就本班同学的上学方式进行的一次调查统计绘制的两幅不完整的统计图。请你根据统计图中提供的信息,解答下列问题:
(1)八年级(1)班共有多少名学生?
(2)在条形统计图中,将表示“骑车”的部分补充完整;
(3)从条形统计图或扇形统计图中写出三条正确的信息.
五、全心做一做(本大题共1小题,共10分)
22. 如图,有A、B、C三种不同型号的卡片若干,其中A型是边长为a的正方形,B型是长为b,宽为a的矩形。C型是边长为b的正方形.
(1)请你选取相应型号和数量的卡片,在下图中的网格中拼出(或镶嵌)一个符合乘法公式的图形(要求三种型号的卡片都用上),这个乘法公式是 .
(2)现有A型卡片1个,B型卡片6个,C型卡片10个,从这17个卡片中拿掉一个卡片,余下的卡片全用上,能拼出(或镶嵌)一个矩形(或正方形)的都是哪些情况? 请你通过运算说明理由.
初二上册数学期末试卷
参考答案一、精心选一选(本大题共8小题,每小题3分,共24分)
下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内.
1.D; 2.A; 3.C; 4.C; 5.D; 6.B; 7.C; 8.D.
二、细心填一填(本大题共6小题,每小题3分,共18分)
9.-3; 10.答案不惟一,如中、日、木等;
11.答案不惟一, 如下图 12.答案不惟一.有三种结果:
13.(1)198×81;(2)132×42; 14.(1)14;(2)3n+2.
三、耐心求一求(本大题共4小题,每小题6分,共24分)
15.(1)解:原式=(x-y)2+2(x-y) ………………1分
=(x-y)[(x-y)+2] ………………2分
=(x-y)(x-y+2). ………………3分
(2)解:原式=[a+4(a-b)][a-4(a-b)] ………………1分
=(5a-4b)(-3a+4b) ………………2分
=(5a-4b)(4b-3a). ………………3分
16.解:原式=xy+y2+x2-y2-x2 ………………2分
=xy. ………………3分
当x=-2, y= 时, …………………4分
原式=-2× =-1. ………………6分
17.解:添加的方法有5种,其演示的过程分别是 …………1分
添加4x,得4x2+1+4x=(2x+1)2. …………2分
添加-4x,得4x2+1-4x=(2x-1)2. ……………3分
添加4x4,得4x2+1+4x4=(2x2+1)2. ……………4分
添加-4x2,得4x2+1-4x2=12. ……………5分
添加-1,得4x2+1-1=(2x)2. ……………6分
18.解: (1)△ABC关于y轴的对称△A′B′C′如图所示.………2分
(2)由图可知:A′(3,-2),B′(2,-3),C′(-1,-1), ………4分
S△A′B′C′=4×2- ×4×1- ×1×1- ×3×2= (面积单位).……6分
四、用心探一探(本大题共3小题,每小题8分,共24分)
19.(1)答:△ODE是等边三角形,其理由是: ………………1分
∵△ABC是等边三角形,∴∠ABC=∠ACB=60°. ………………2分
∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°…3分
∴△ODE是等边三角形. ………………4分
(2)答:BD=DE=EC,其理由是: ………………5分
∵OB平分∠ABC,且∠ABC=60°,∴∠ABO=∠OBD=30°. ………6分
∵OD∥AB,∴∠BOD=∠ABO=30°.
∴∠DBO=∠DOB,∴DB=DO. …………………7分
同理,EC=EO.
∵DE=OD=OE,∴BD=DE=EC. …………………8分
20.解: (1)设直线l2的解析式为y=k2x+b2, …………………1分
则由图象过点(0,-2)和(2,3),得
解得 ………………3分
∴ ………………4分
(2)由图象知, 当x>-1时,直线l1表示的一次函数的函数值大于0, ……5分
而由 得 .
∴当x> 时,直线l2表示的一次函数的函数值大于0. ……………7分
∴当x> 时,直线l1 ,l2表示的一次函数的函数值都大于0. ……………8分
21.解: (1)八年级(1)班共有学生30÷50%=60(名).………………3分
(2)骑车人数为60×30%=18(名),补充图形(略).……5分
(3)答案不惟一,只要合理均可.如:…………………………8分
①乘车、骑车人数和与步行人数一样多;
②乘车人数所占的百分比是20%;
③骑车人数所占扇形圆心角的度数是108°.
五、全心做一做(本大题共1小题,共10分)
22.解: (1)乘法公式是(a+b)2=a2+2ab+b2,拼成乘法公式的图形
如图所示.………2分
(2)从三种卡片中拿掉一个卡片,会出现三种情况:
①6ab+10b2.
由①得6ab+10b2=2b(3a+5b)知用6个B型卡片,10个C型卡片,可拼成长为
3a+5b,宽为2b或长为2(3a+5b),宽为b的矩形. ………………6分
②a2+6ab+9b2.
由②得a2+6ab+9b2=(a+3b)2知用1个A型卡片,6个B型卡片,9个C型卡片,可拼成边长为a+3b的正方形. ………………8分
③a2+5ab+10b2.
由③得a2+5ab+10b2在实数范围内不能分解因式知用1个A型卡片,5个B型卡片,10个C型卡片不能拼成符合要求的图形. ………………10分
八年级上册数学知识点
【第十三章实数】
※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作.0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根.
※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根.
※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根.
※正数的立方根是正数;0的立方根是0;负数的立方根是负数.
数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
【第十四章一次函数】
1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点).
2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式.
3.若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).特别地,当b=0时,称y是x的正比例函数.
4.正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线.
5.正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
6.已知两点坐标求函数解析式(待定系数法求函数解析式):
把两点带入函数一般式列出方程组
求出待定系数
把待定系数值再带入函数一般式,得到函数解析式
7.会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)
【第十五章整式的乘除与因式分解】
1.同底数幂的乘法
※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);
⑤公式还可以逆用:(m、n均为正整数)
2.幂的乘方与积的乘方
※1.幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.
※2..
※3.底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,
如将(-a)3化成-a3
※4.底数有时形式不同,但可以化成相同.
※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).
※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数).
※7.幂的乘方与积乘方法则均可逆向运用.
3.整式的乘法
※(1).单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.
单项式乘法法则在运用时要注意以下几点:
①积的系数等于各因式系数积,先确定符号,再计算绝对值.这时容易出现的错误的是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
④单项式乘法法则对于三个以上的单项式相乘同样适用;
⑤单项式乘以单项式,结果仍是一个单项式.
※(2).单项式与多项式相乘
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.
单项式与多项式相乘时要注意以下几点:
①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
②运算时要注意积的符号,多项式的每一项都包括它前面的符号;
③在混合运算时,要注意运算顺序.
※(3).多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加.
多项式与多项式相乘时要注意以下几点:
①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
②多项式相乘的结果应注意合并同类项;
③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积.对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得
4.平方差公式
¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,
※即.
¤其结构特征是:
①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;
②公式右边是两项的平方差,即相同项的平方与相反项的平方之差.
5.完全平方公式
¤1.完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,
¤即;
¤口决:首平方,尾平方,2倍乘积在中央;
¤2.结构特征:
①公式左边是二项式的完全平方;
②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍.
¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误.
添括号法则:添正不变号,添负各项变号,去括号法则同样
6.同底数幂的除法
※1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).
※2.在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如,
④运算要注意运算顺序.
7.整式的除法
¤1.单项式除法单项式
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
¤2.多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号.
8.分解因式
※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.
※2.因式分解与整式乘法是互逆关系.
因式分解与整式乘法的区别和联系:
(1)整式乘法是把几个整式相乘,化为一个多项式;
(2)因式分解是把一个多项式化为几个因式相乘.
分解因式的一般方法:
1.提公共因式法
※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.
如:
※2.概念内涵:
(1)因式分解的最后结果应当是“积”;
(2)公因式可能是单项式,也可能是多项式;
(3)提公因式法的理论依据是乘法对加法的分配律,即:
※3.易错点点评:
(1)注意项的符号与幂指数是否搞错;
(2)公因式是否提“干净”;
(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.
2.运用公式法
※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.
※2.主要公式:
(1)平方差公式:
(2)完全平方公式:
¤3.易错点点评:
因式分解要分解到底.如就没有分解到底.
※4.运用公式法:
(1)平方差公式:
①应是二项式或视作二项式的多项式;
②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;
③二项是异号.
(2)完全平方公式:
①应是三项式;
②其中两项同号,且各为一整式的平方;
③还有一项可正负,且它是前两项幂的底数乘积的2倍.
3.因式分解的思路与解题步骤:
(1)先看各项有没有公因式,若有,则先提取公因式;
(2)再看能否使用公式法;
(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;
(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;
(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.
4.分组分解法:
※1.分组分解法:利用分组来分解因式的方法叫做分组分解法.
如:
※2.概念内涵:
分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.
※3.注意:分组时要注意符号的变化.
5.十字相乘法:
※1.对于二次三项式,将a和c分别分解成两个因数的乘积,,,且满足,往往写成的形式,将二次三项式进行分解.
如:
※2.二次三项式的分解:
※3.规律内涵:
(1)理解:把分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.
(2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.
※4.易错点点评:
(1)十字相乘法在对系数分解时易出错;
(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.
八年级数学期末复习计划
本学期内容多,导致本次复习时间较短,只有两个周的复习时间。为了迎接期末统一检测,实现预定的教学目标,以取得较好的成绩,结合所教学班级学生的情况,对期末复习作以下安排:
一、复习目标
落实知识点,提高学习效率,在复习中做到突出重点,把知识串成线,结成一张张小网,努力做到面向全体学生,照顾到不同层次的学生的学习需要,努力做到扎实有效,避免做无用功。
1、通过单元区块专题训练,让学生体验成功的快乐,激发其学习数学的兴趣;
2、通过综合训练使学生进一步探索知识间的关系,明确内在的联系,培养学生分析问题和解决问题能力,以及计算能力。
二、复习方式
1.总体思想:先分单元专题复习,再综合练习;
2.单元专题复习法:先做单元试卷,然后教师根据试卷反馈讲解,再布置作业查漏补缺;
3.综合练习:教师及时认真批改,讲评时根据学生存在的问题及时辅导,并且给以巩固训练。
三、方法和措施
第一阶段:知识梳理形成知识网络
期末复习从1月4号开始,根据历年期末调研试卷命题的特点,精心选择一些新颖的、有代表性的题型编写到复习讲学稿中,前面三章花5天的时间复习结束,最后两章虽然是刚学的内容准备加强复习共用6天。主要把复习的重点放在第12章、第13章、第14章、第15章。
具体安排如下:
1月4日至5日:复习第十一章三角形、第十二章全等三角形
1月6日:复习第十三章轴对称(重点是等腰三角形)
1月7日至8日:复习第十四章整式乘法与因式分解
1月.9日至10日:复习第十五章分式
1月11日综合复习第11章至十三章几何综合
1月12日复习第十四、十五章代数综合
第二阶段:综合训练(模拟练习)
这一阶段,重点是提高学生的综合解题能力,训练学生的解题策略,加强解题指导,提高应试能力。做法是:从市调研试卷、其他县市调研试卷、自编模拟试卷中精选几份进行训练,每份的练习要求学生独立完成,老师及时批改,重点讲评。(本阶段从13、14、18~21号,约6天左右)
四.在复习阶段要处理好两个方面的关系
(1)课内与课外,讲与练的关系。在课堂上要注意知识的全面性、系统性,面向全体学生,注意突出基础知识和基本能力,引导学生提高分析解决问题的思考方法。切忌以讲代学,以练代学,顾高不顾低。课外练习要精心设计、精心造题,以有理于消化所学的知识、方法,要留有思考的余地,让学生练习中提高对知识和方法的领会和掌握。练习量要兼顾减轻学生的负担,量要适中。
(2)阶段复习与总体提高的关系。复习分二阶段完成,但每一阶段不是孤立的,而是总体的一个环节。在第一阶段复习中,对重要的知识点,在课堂教学与练习中要尽量体现知识间的联系,学科间的渗透、知识的应用性和时代性,有利于减轻学生复习的压力,也有利于学生的理解和掌握。通过过程中量的积累达到质的转变的突破,以提高总体成绩。
总之,在数学期末复习中,我力求做到精选精练,指导方法,双基训练与能力提高并重。争取让学生取得较好的成绩。