免费学习网小学知识点五年级内容页

数学五年级下册冀教版电子课本

2023-12-08 20:09:03 五年级

五年级数学下册期末知识点

一、图形的变换

图形变换的基本方式是平移、对称和旋转。

1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……

等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

(2)圆有无数条对称轴。

(3)对称点到对称轴的距离相等。

(4)轴对称图形的特征和性质:

①对应点到对称轴的距离相等;

②对应点的连线与对称轴垂直;

③对称轴两边的图形大小、形状完全相同。

对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。

2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

(1)生活中的旋转:电风扇、车轮、纸风车

(2)旋转要明确绕点,角度和方向。

(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。

旋转的性质:

(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;

(2)其中对应点到旋转中心的距离相等;

(3)旋转前后图形的大小和形状没有改变;

(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;

(5)旋转中心是不动的点。

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

二、因数和倍数

1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。

一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

(4)2、3、5的倍数特征

1) 个位上是0,2,4,6,8的数都是2的倍数。

2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的的两位数是90,最小的三位数是120。

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

3、自然数按能不能被2整除来分:奇数、偶数。

自 奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。

数 偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.

关系: 奇数+、- 偶数=奇数 奇数+、- 奇数=偶数 偶数+、-偶数=偶数。

5、自然数按因数的个数来分:质数、合数、1三类.

质数(或素数):只有1和它本身两个因数。

合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

1: 只有1个因数。“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4,连续的两个质数是2、3。

每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

20以内的质数:有8个(2、3、5、7、11、13、17、19)

100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、

43、47、53、59、61、67、71、73、79、83、89、97

100以内找质数、合数的技巧:

看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

关系: 奇数×奇数=奇数 质数×质数=合数

6、、最小

A的最小因数是:1; A的因数是:A; A的最小倍数是:A;

最小的奇数是:1; 最小的偶数是:0;最小的质数是:2;最小的合数是:4;

最小的自然数是:0;

7、分解质因数:把一个合数分解成多个质数相乘的形式。

用短除法分解质因数 (一个合数写成几个质数相乘的形式)。

比如:30分解质因数是:(30=2×3×5)

8、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7 两个合数的互质数:8和9 一质一合的互质数:7和8

两数互质的特殊情况:

⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质;

⑷2和所有奇数互质; ⑸质数与比它小的合数互质;

9、公因数、公因数

几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。

用短除法求两个数或三个数的公因数 (除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。

如果两数是倍数关系时,那么较小的数就是它们的公因数。

如果两数互质时,那么1就是它们的公因数。

10、公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

如果两数互质时,那么它们的积就是它们的最小公倍数。

小学五年级下册数学课件

教学内容:观察物体

教学目标:

1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。

2.培养学生从不同角度观察,分析事物的能力。

3.培养学生构建简单的空间想象力。

重点:帮助学生构建初步的空间想象力。

难点:帮助学生构建初步的空间想象力。

教学过程:

一、谜语导入

请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)

二、合作探究

(一)整体观察

1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:

你观察到的正方体是什么样的?

在你的位置上观察,你看到了哪几个面?

2.学生汇报交流。

学生自由走动,观察。汇报交流。

3.解释应用

教师出示两个正方体的立体图,一个有虚线,另一个没有。

提问:谁能用刚学到的知识解释一下正方体为什么这样画?

学生解释说明。

(二)分别从三个面进行观察(出示例1)

1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。

学生离开座位自由观察。

2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。

总结学生的发言:从不同的方向观察,所看到的形状是不一样的。

三、拓展应用

1.做教科书例2

2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。

学生玩游戏,教师指导。

四、总结

本节课你学会了什么?

五、作业布置

兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。

1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。

2.从一个面看到物体的形状,可以有多种不同的摆放方式。

3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。

怎样学好数学的技巧

1、认真“听”的习惯。

为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。

2、积极“想”的习惯。

积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。

3、仔细“审”的习惯。

审题能力是学生多种能力的综合表现。教师应要求学生仔细阅读教材内容,学会抓住字眼,正确理解内容,对提示语、旁注、公式、法则、定律、图示等关键性内容更要认真推敲、反复琢磨,准确把握每个知识点的内涵与外延。建议教师们经常进行“一字之差义差万”的专项训练,不断增强学生思维的深刻性和批判性。

4、独立“做”的习惯。

练习是教学活动的重要组成部分和自然延续,是学生最基本、最经常的独立学习实践活动,还是反映学生学习情况的主要方式。教师应教育学生对知识的理解不盲从优生看法,不受他人影响轻易改变自己的见解;对知识的运用不抄袭他人现成答案;课后作业要按质、按量、按时、书写工整完成,并能作到方法最佳,有错就改。

5、善于“问”的习惯。

俗话说:“好问的孩子必成大器”。教师应积极鼓励学生质疑问难,带着知识疑点问老师、问同学、问家长,大力提倡学生自己设计数学问题,大胆、主动地与他人交流,这样既能融洽师生关系,增进同学友情,又可以使学生的交际、表达等方面的能力逐步提高。

6、勇于“辩”的习惯。

讨论和争辩是思维最好的媒介,它可以形成师生之间、同学之间多渠道、广泛的信息交流。让学生在争辩中表现自我、互相启迪、交流所得、增长才干,最终统一对真知的认同。

7、力求“断”的习惯。

民族的创新能力是综合国力的重要表现,因此新大纲强调在数学教学中应重视培养学生的创新意识。教师应积极鼓励学生思考问题时不受常规思路局限,乐于和善于发现新问题,能够从不同角度诠释数学命题,能用不同方法解答问题,能创造性地操作或制作学具与模型。

8、提早“学”的习惯。

从小学生认识规律看,要获得良好的学习成绩,必须牢牢抓住预习、听课、作业、复习四个基本环节。其中,课前预习教材可以帮助学生了解新知识的要点、重点、发现疑难,从而可以在课堂内重点解决,掌握听课的主动权,使听课具有针对性。随着年级的升高、预习的重要性更加突出。

9、反复“查”的习惯。

培养学生检查的能力和习惯,是提高数学学习质量的重要措施,是培养学生自觉性和责任感的必要过程,这也是新大纲明确了的教学要求。练习后,学生一般应从“是否符合题意,计算是否合理、灵活、正确,应用题、几何题的解答方法是否科学”等几个方面反复检查验算。

10、客观“评”的习惯。

学生客观地评价自己和他人在学习活动中的表现,本身就是一种高水平的学习。只有客观地评价自己、评价他人,才能评出自信,评出不足,从而达到正视自我、不断反思、追求进步的目的,逐步形成辩证唯物主义认识观。

11、经常“动”的习惯。

数学知识具有高度的抽象性,小学生的思维带有明显的具体性,所以新大纲强调应重视从学生的生活经验中学习理解数学,加强实践能力的培养。在教学中,教师应强调学生手脑并用,以动促思,对难以理解的概念通过举实例加以解决,对较复杂的应用题通过画图找到正确的解答方法,对模糊的几何知识通过剪剪拼拼或实验达到投石问路的目的。

12、有心“集”的习惯。

学生在学习活动中犯错并不可怕,可怕的是同一问题多次犯错。为避免同一错误经常犯,有责任民的教师在教室里布置了错会诊专栏,有心计的学生建立错误的知识档案,将平时练习或考试中出现的错题收集在一起,反复警示自己,值得提倡。

13、灵活“用”的习惯。

学习的目的在于应用,要求学生在课堂上学到的知识加以灵活运用,既能起到巩固和消化知识的作用,又有利于将知识转化成能力,还能达到培养学生学习数学的兴趣的目的。

数学学好的方法是什么

1.数学要求具备熟练的计算能力,所以课后还有做足一定量的练习题,只有通过做题练习才能拥有计算能力。

2.课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。

3.数学公式一定要记熟,并且还要会推导,能举一反三。

4.数学重在理解,在开始学习知识的时候,一定要弄懂。所以上课要认真听讲,看看老师是怎样讲解的。

5.数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。

6.数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。

7.数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。

8.数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。

猜你可能喜欢