八年级数学上册教案
教学目标
知识与能力:
1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.
2.理解平行四边形的另一种判定方法,并学会简单运用.
过程与方法:
1.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识.
2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.
情感、态度与价值观:
通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.
教学方法 启发诱导式 教具 三角尺
教学重点 平行四边形判定方法的探究、运用.
教学难点 对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用
教学过程:
第一环节 复习引入:
问题1:
1.平行四边形的定义是什么?它有什么作用?
2.判定四边形是平行四边形的方法有哪些?
(1)两组对边分别平行的四边形是平行四边形.
(2)一组对边平行且相等的四边形是平行四边形.
(3)两条对角线互相平分的四边形是平行四边形.
第二环节 探索活动
活动:
工具:两对长度分别相等的木条。
动手:能否在平面内用这四根笔摆成一个平行四边形?
思考1.1:你能说明你所摆出的四边形是平行四边形吗?
已知:四边形ABCD中,AD=BC,AB=CD. 试说明四边形ABCD是平行四边形.
思考1.2:以上活动事实,能用文字语言表达吗?
学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到:
(1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形.
(2)通过观察、实验、猜想到:
两组对边分别相等的四边形是平行四边形.
在此活动中,教师应重点关注:
(1)学生在拼四边形时,能否将相等两木条作为四边形的对边;
(2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;
(3)学生能否通过独立思考、小组合作得出正确的证明思路.
第三环节 巩固练习
例1 如图:在四边形ABCD中,∠1=∠2,∠3=∠4.四边形ABCD是平行四边形吗?为什么?
八年级数学上册教案例2 如图所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,图中有哪些互相平行的线段?
随堂练习
1.判断下列说法是否正确
(1)一组对边平行且另一组对边相等的'四边形是平行四边形 ( )
(2)两组对角都相等的四边形是平行四边形 ( )
(3)一组对边平行且一组对角相等的四边形是平行四边形 ( )
(4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )
2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?为什么?
3.如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.
4.如图:AD是ΔABC的边BC边上的中线.
(1)画图:延长AD到点E,使DE=AD,连接BE,CE;
(2)判断四边形ABEC的形状,并说明理由.
第四环节 小结:
师生共同小结,主要围绕下列几个问题:
(1)判定一个四边形是平行四边形的方法有哪几种?
(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?
(3)平行四边形判定的应用 集备意见 个案补充
八年级上册数学教学计划
八年级是初中阶段最为关键的一年,如果学生在八年级学习抓得比较紧,到九年级时相对就会变得轻松,反之,到了九年级后就会完全放弃,数学尤其如此。事实上在七年级时,学生对学习数学的兴趣深厚,也会很努力,但如果效果不是很好时,相当部分学生就会放弃。因此在制定八年级数学教学计划时要充分考虑到这一点。
一、指导思想
坚持党的教育方针,以《初中数学新课程标准》为准绳,进一步将新课程改革推向更深层次,进一步提高学生的基础知识和基本技能。结合学生的实际情况和教材内容,制定切实可行的教学计划,进一步培养学生创新思维和应用数学的能力。通过本学期的数学教学,激发学生学习数学的兴趣,逐步提高学生的数学成绩,完成八年级上册数学教学任务。
二、教学目标
知识技能目标:认识实数,掌握实数有关的运算方法;掌握全等三角形的性质与判定、轴对称及轴对称图形的特点;掌握整式的乘除运算、乘法公式和因式分解。过程方法目标:初步建立数形结合的思维模式,学会观察、分析、归纳、总结、几何图形的内在特点,学会使用数学语言表示数学关系。态度情感目标:从生活入手认识数学,探索数学规律,并将数学知识回归到生活之中。
三、教学措施
1、作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好教案。
2、营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。
3、搞好阅卷分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。
4、写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。
5、加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习欲望,针对其基础和学习能力采取针对性的补救措施。
6、成立学习小组。根据班内实际情况进行优等生、中等生与后进生搭配,将全班学生分成多个学习小组,以优辅良,以优促后,实现共同提高的目标。
7、组织单元测试。根据教学进度对每单元教学内容进行测试,做好试卷分析,查找问题。大面积存在的问题在进行试卷讲解时要重点进行分析讲解,力求透彻。
四、课后辅导:
1、为了更好地提高教学效果,补充课堂教学中的不足之处,辅导是必不可少的一环,主要有: 布置作业,及时检查并订正。
2、课后对学生知识掌握情况进行调查,教学效果进行咨询,哪些知识点还需进一步巩固,哪些知识还没有讲解透彻,可以从学生那里获得第一手资料,从而调整自己的教学计划。
3、激励学生多问为什么,扩大学生的知识视野。
4、努力开展第二课堂活动,补充课堂教学的不足之处,调动学生学习的积极性和学习兴趣。
5、及时了解学生的思想变化,帮助学生解决学习与生活中的一些难点,及时做好学生的政治思想工作。
八年级数学上册测试题
一、选择题(10小题,每题3分,共30分)
1.在实数、0、、-1、2-π、中,无理数的个数是
A.2个B.3个C.4个D.5个
2.以直角三角形的两直角边为边长所作正方形的面积分别是9和16,则斜边长为( )
A.25B.5C.15D.225
3.如果三角形的三边5,m,n满足,那么这个三角形是( )
A.锐角三角形B.直角三角形C.钝角三角形D.无法确定
4、下列说法正确的是
A.的立方根是0.4B.的平方根是
C.16的立方根是D.0.01的立方根是0.000001
5.若一个数的立方根等于这个数的算术平方根,则这个数是
A.0B.0和1C.1D.±1和0
6.下列计算正确的是( )
A、=B、C、D、
7.若-3,则的取值范围是.
A.>3B.≥3C.<3D.≤3
8.若代数式有意义,则的取值范围是
A.B.C.D.
9、如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是
A、B、1.4C、D、
10.如图,已知在中,,,分别以,为直径作半圆,面积分别记为,,则+的`值等于
A.9B.25C.50D.16
一、填空题(共10小题,每小题3分,共30分)
11、的算数平方根是,
12、1-的相反数是_______,绝对值是__________.
13、一个实数的平方根大于2小于3,那么它的整数位上可能取到的数值为__________.
14、计算:(1)=,(2)=.
15、比较________(填“<”“>”“=”).
16、如果=2,那么(x+3)2=______.
17、在Rt△ABC中,斜边AB=2,则AB2+BC2+CA2= .
18、把一根12厘米长的铁丝,从一端起顺次截下3厘米和5厘米的两根铁
丝,用这三条铁丝摆成的三角形是 .
19、一个三角形三边分别为8,15,17,那么最长边上的高为 .
20、已知,则由x,y,z为三边的三角形是 .
四、解答题(共40分)
21、计算题(每小题5分,共15分)
1)2)
22、(本小题6分)如图3,在四边形ABCD中,∠BAD=∠DBC=90°,若AD=4cm,AB=3cm,BC=12cm,求CD的长及四边形ABCD的面积.
23、(本小题6分)已知是的整数部分,是的小数部分,求的值。
24、(本题6分)已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值。
25、(7分)如图,一架长25米的云梯,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑5米,那么云梯的底端在水平方向将滑多少米?(保留一位小数)